De marine van morgen

Gestart door Parera, 03/04/2018 | 12:38 uur

Flyguy

Op zich aast de toren in Breda wel redelijk op een permanente rotatie in de west zoals de andere KMD's. RIU Palace bemannen?

Parera

@eduarddvds
CitaatGister een bezoek mogen brengen aan 306 Squadron; de eenheid die straks met de MQ-9 gaat opereren. Een moderne capaciteit met veel herkenbare zaken uit de tijd van de P3-C Orion. Blij dat we dat gemis (na vele jaren) enigszins gaan opvullen!



@C_ZMCARIB
CitaatDie P3's zagen we structureel in het Caribisch deel van ons koninkrijk, de MQ-9 straks ook?

@eduarddvds
Citaat
Voor een structurele presentie zijn meer systemen nodig, dus kom maar op met die behoeftestelling 👍🏻

Parera

Citaat van: Thomasen op 15/02/2019 | 07:54 uur
Is toch vooral een artikel over Duits project management. En ja, oud materieel blijft een issue, zelfde als met de verkoop van de Leo's.
Maar we hebben gewoon een essentiële capaciteit afgestoten, waar we tot de dag van vandaag enorm last van hebben. Als revisie te duur was, hadden we nieuwe moeten kopen.

Ik vermoed dat het bij ons een combinatie van factoren geweest is, de toestellen moesten misschien compleet gereviseerd worden om inzetbaar te blijven. Door het krappe budget was deze revisie niet uit te voeren op dat moment en nieuwe toestellen aankopen kon om die zelfde reden niet. Toen zag minister Kamp het licht en dacht ''wat als we de MPA's nu eens afstoten?'' dan bespaar ik geld op de revisie/vervanging en daarmee kon ook Valkenburg worden opgeheven en verkocht worden. Dat heeft de minister toen een hoop geld ''opgeleverd'', dut verhaal is vergelijkbaar met de Leo2's een capaciteit die nooit volledig afgestoten had mogen worden.

De 10 P-3's waren eind jaren '90 nog gemoderniseerd waarmee ze tot 2020 mee konden volgens defensie. Kamp vond het echter nodig om ze te verkopen en de 3 niet gemoderniseerde die in Portugal opgeslagen stonden ook te verkopen. Ik had goed kunnen begrijpen dat er besloten is om te bezuinigen en eventueel zelf met slechts 6 P-3's door te gaan maar het compleet afstoten is een foute zet geweest.

http://www.p3orion.nl/rnln-1.pdf
http://www.p3orion.nl/rnln-2.pdf

Huzaar1

CitaatJuly 23, 2018 

Is Germany's Navy Dead?
The German Navy's current condition is a true "Schande;" an embarrassment for Europe's wealthiest country.

by John Beckner Helmoed Heitman
In a country where good news stories about the military are few and far between, recent years have been kind to the German Navy ( Deutsche Marine).  Its vessels had been participating with its allies in counter-piracy operations like Operation ATALANTA off East Africa, and its ships have been involved in refugee rescue in the Mediterranean Sea as well as weapons interdiction off the coast of Lebanon.  Pictures of German Navy vessels assisting in the rescue of bedraggled refugees portrays the public face of the Bundeswehr in a way no  Eurofighter or Leopard 2  tank ever can.

Public perceptions notwithstanding, the mission of the Marine is to fill its NATO commitments.  Unfortunately, due to poor planning and decision-making, and lack of funding, it is incapable of fulfilling its primary mission requirements.  Unless changes are made promptly and quickly, its capabilities will degrade even further over the coming years.  While it is nice to blame "budget cuts," the Marine's problems go well beyond a lack of money.  The German Navy has major problems with all its major components; submarines, surface ships, and what's left of its naval air capability.

(This first appeared in Feb. 2018 in RealClearDefense here.)

The Marine has six Type 212 U Boats; none of which are currently operational.  While German industry continues to sell similar vessels around the world, and some of its NATO allies operate them on very sensitive SIGINT missions into remote foreign harbors, the German Navy with its long history of submarine development and operation, today cannot even deploy a single submarine on operations – and will be unable to so for some time to come.

On one of its first missions, the new U36 was operating off Norway when it damaged its stern fins "hitting a rock during a dive," and had to be escorted back to Germany by a vessel monitoring its test program.  While mishaps like this happen, it just added to the malaise of the German navy which pioneered submarine operations and design.  Even worse U31, the first submarine of the class, has been out of service since 2014 pending completion of repairs.

U32 experienced battery damage in mid-2017 and is awaiting a berthing/repair space.  However, U-4 is "already in line" for the next available docking spot which should come available early this year.  Thankfully, U33 will (or has just) finished its current maintenance in early 2018 and will be released for Baltic "workups" to return to service.    U35, the sister ship of U-6, was commissioned in October of last year but won't become operational until June.

Press reports state the problem is "lack of spares," and that "Germany can no longer afford to stock spares for these expensive submarines."   Really?  It boggles the mind that the wealthiest country in the EU cannot even afford to support a U Boat fleet of six vessels.  These vessels are designed for the Baltic and due to their hydrogen fuel-cell propulsion system can stay underwater for as long as two weeks.  While this sounds rather benign, operations in the Baltic are difficult due to shallow water, and even more difficult since their peacetime mission requirements involve dangerous stealthy operations to gain intelligence on Russian ports.  The Type 212 U Boats are the optimal submarines for these missions, so it is a particular pity that they sit in dry dock waiting for spares that should be readily available.  Today, other countries' submarines take up this slack and perform this mission since Germany spends too little on its military to fund an adequate support infrastructure for these vessels.  One shudders to think how long it would take Germany to up the readiness of its tiny U Boat fleet should the Russians become more aggressive against the NATO Baltic countries.
Recommended: What Will the Sixth-Generation Jet Fighter Look Like?


In 2010, the last German MPA  Atlantique aircraft followed their fast-jet  Tornadobrethren into retirement.  To make up for the lack of capability, in 2005, Germany decided to acquire second-hand Dutch P-3C aircraft.  While some grumbled that replacing an expensive to operate two-engined aircraft with an expensive to operate four-engined aircraft made little sense, there is little doubt that the P-3C is a more capable aircraft than the  Atlantique it replaced.  However, wouldn't it have made more sense to consider the more modern P-8, like Germany's NATO allies who are all retiring their P-3s.

To make matters worse, it soon became apparent that what the planners failed to account for is that the former Dutch aircraft had too many hours on their airframes, and they needed all new wings plus a modern tactical system.   Cynics claim this was behind the Dutch decision to retire the aircraft in the first place, one German Navy officer remarking that they were held together by their paint.  Then, instead of  competing the expensive structural and avionics upgrades like the USN, and countries like South Korea, Australia, and New Zealand have done, the German Navy took the "easy way out," and let industry take the lead. Lockheed Martin is under an eight (8) year sole-source FMS contract to perform the upgrade.  The structural program consists of eight kits which include the outer wing, center fuselage, and horizontal stabilizer.  According to naval experts, no P3C aircraft are operational today.  Isn't there anyone at the BAAINBw HQ in Koblenz (the former BWB) who can run  competitive P-3 upgrade programs like other countries do, or do the cost/benefit analysis to see if buying new aircraft makes any sense?

The state of the surface fleet is little better.  The Navy operates ten Frigates and five Corvettes.  The F-130 Corvette is a strange beast, perhaps the naval equivalent to the 'horse designed by a committee,' too small to be useful 'out of area' and too large to be agile and fast. It seems to have been the result of a compromise between the FAC community, who wanted something small, fast and agile for inshore operations in the Baltic, and the frigate community, who wanted a ship large enough for Atlantic operations and further afield. One result of the compromise is an 1,800-ton, 89 m ship that cannot carry a manned helicopter (!), a major disadvantage in almost any type of operation. Moreover, an endurance of only one week without a support ship in company hardly suits it to operations outside the Baltic or the North Sea. And, of course, they were delivered with self-destroying gearboxes and a gas problem in the machinery spaces. Worse, each of these ships costs the German Navy more than the 3,700-ton, 121 m Meko A200 frigates built for the South African Navy.

Strangely, the Marine has just committed to five more K-130 corvettes, after the previous navy chief killed off batches two and three – as his last gift to the service before retiring - on the basis of practical experience that showed them to be little more than over-armed and over-priced OPVs but lacking the latter's ability to operate a helicopter.

Recently, the Marine's F-125 frigate program has been in the news since the new 7,000-ton  Baden-Württemberg failed its acceptance trials.  An article in the  Wall Street Journal  which cataloged its design problems even went so far as to say, "it really doesn't work."  Aside from its seaworthiness and software issues which one presumes will be solved, they have managed to turn the F-125 into a nice 7,000-ton target by omitting to fit a SAM system – 'they will only be used in "stabilization operations" (read "good news" refugee rescue and counter-piracy), and where there will be "no air threat."

The decision was defended with the statement "if there should be an air threat, they will be accompanied by an F-123 or F-124." Really? When pushed on the matter, a Navy source said, "they would shoot down any attacking aircraft with RAM (Rolling Airframe Missile)."  That's fine for the low altitude missile threat, but these expensive vessels do not have an answer to aircraft toss-bombing with laser-homing bombs (no active radar, no heat source; making the RAM useless) from ranges that will allow the attacking aircraft to escape RAM. Even a spread of unguided fragmentation bombs could be delivered by almost any modern fighter with enough accuracy to take out most antennas and sensors, leaving the ship useless and unable to defend itself against further attack.
Al even terug, maar met interessante status over die MPA crap waar jullie op het forum maar niet over willen ophouden  :angel:
"Going to war without France is like going deer hunting without your accordion" US secmindef - Jed Babbin"

Flyguy

#628
Citaat van: Parera op 10/02/2019 | 16:20 uur
De studie spreekt over ''automation'' , andere woorden voor a.i. en bij dit soort snelheden kan je ook niet anders dan een automatische beslissing te doen.
Een mens is te langzaam voor hypersone raketten, als je de Brahmos pakt met mach 4 die legt elke seconde 1361 m af, de tijd tussen detectie (automatisch) en het opmerken van de target zit makkelijk 3 seconden waarin die raket al 4 km heeft afgelegd, dan moet de mens nog kijken naar wat is het en is het vijandig + 5 seconden (met IFF) vervolgens moet je nog beginnen met de afvuur procedure en is de raket al bijna 11 km verder dan waar die is opgepikt door de radar. Volgens mij kan een operator niet zelf besluiten een raket af te vuren maar loopt dit via een of ?meerdere extra personen. Hoeveel tijd kunnen we rekenen voor de afvuur procedure (aanvraag tot het in de lucht zijn van de missile) hier voor rekenen? 10 a 15 seconden in een ideale situatie?

Als we even uitgaan van een SMART-L MM/N ziet die een stealth kruisraket pas op +/- 65 km afstand, dat komt neer op minder dan 48 seconden vanaf het moment van detectie tot aan impact.
Met de schatting zit ik op 15 a 20 seconden vanaf het moment van detectie waarbij de raket al 20 a 27 km  heeft afgelegd. Daarin moet de ESSM de raket onderscheppen en eventueel nog een tweede raket afgevuurd worden als de eerste faalt. Als backup blijf je de CIWS's nodig hebben.

De vraag is of ''de mens'' het aandurft om a.i. de beslissing over het afvuren durft te laten nemen. Dan komt het in de buurt van wat mensen verstaan onder ''killer robots'', ik zelf denk dat er weinig andere opties zijn dus we a.i. moeten laten beslissen. En om deze reden houd de studie dus ook rekening met het afvuren van 2 ESSM's op elke inkomende raket.

Als je zoals de LCF's dus maar 32 ESSM's bij je hebt dan kan je slechts 16 doelen uitschakelen, en dat is niet veel. De studie vind 50 stuks al te weinig.

Bij nieuwe generatie hypersone stealth AShM's houdt men rekening met een reactietijd van onder de 10 seconden (onder de 3 in sommige gevallen). Dan wil een CCO wel wat automatische hulp. Snelheden liggen daar in de toekomst zelfs rond de 2500 m/s, reken maar na hoe snel je dan de sjaak bent.

En wij maar oefenen met "dirty wings!"

Parera

Citaat van: jurrien visser (JuVi op Twitter) op 10/02/2019 | 16:38 uur
En dan heb je het nu over een situatie waarin gevechtswacht reeds op post zit...

Je moet er niet aan denken als een aanval plaats vindt tijdens het wisselen van de wacht of tijdens standaard oorlogswacht of in een lagere gereedheidstoestand.

De ideale situatie ja.

De vraag is natuurlijk nog wel hoeveel tijd er nodig is tussen detectie en het afvuren van een ESSM (of andere raket), ik heb gerekend met relatief snelle reacties en inderdaad met het idee dat de posten bemand zijn en er bekend is dat er een dreiging is.

jurrien visser (JuVi op Twitter)

En dan heb je het nu over een situatie waarin gevechtswacht reeds op post zit...

Je moet er niet aan denken als een aanval plaats vindt tijdens het wisselen van de wacht of tijdens standaard oorlogswacht of in een lagere gereedheidstoestand.

Parera

#625
Citaat van: jurrien visser (JuVi op Twitter) op 10/02/2019 | 15:33 uur
Hierin zal (vermoedelijk) een rol voor A.I. zijn weggelegd, zeker als het doel in de nabije toekomst met mach5 en hoger inbound is.

De studie spreekt over ''automation'' , andere woorden voor a.i. en bij dit soort snelheden kan je ook niet anders dan een automatische beslissing te doen.
Een mens is te langzaam voor hypersone raketten, als je de Brahmos pakt met mach 4 die legt elke seconde 1361 m af, de tijd tussen detectie (automatisch) en het opmerken van de target zit makkelijk 3 seconden waarin die raket al 4 km heeft afgelegd, dan moet de mens nog kijken naar wat is het en is het vijandig + 5 seconden (met IFF) vervolgens moet je nog beginnen met de afvuur procedure en is de raket al bijna 11 km verder dan waar die is opgepikt door de radar. Volgens mij kan een operator niet zelf besluiten een raket af te vuren maar loopt dit via een of ?meerdere extra personen. Hoeveel tijd kunnen we rekenen voor de afvuur procedure (aanvraag tot het in de lucht zijn van de missile) hier voor rekenen? 10 a 15 seconden in een ideale situatie?

Als we even uitgaan van een SMART-L MM/N ziet die een stealth kruisraket pas op +/- 65 km afstand, dat komt neer op minder dan 48 seconden vanaf het moment van detectie tot aan impact.
Met de schatting zit ik op 15 a 20 seconden vanaf het moment van detectie waarbij de raket al 20 a 27 km  heeft afgelegd. Daarin moet de ESSM de raket onderscheppen en eventueel nog een tweede raket afgevuurd worden als de eerste faalt. Als backup blijf je de CIWS's nodig hebben.

De vraag is of ''de mens'' het aandurft om a.i. de beslissing over het afvuren durft te laten nemen. Dan komt het in de buurt van wat mensen verstaan onder ''killer robots'', ik zelf denk dat er weinig andere opties zijn dus we a.i. moeten laten beslissen. En om deze reden houd de studie dus ook rekening met het afvuren van 2 ESSM's op elke inkomende raket.

Als je zoals de LCF's dus maar 32 ESSM's bij je hebt dan kan je slechts 16 doelen uitschakelen, en dat is niet veel. De studie vind 50 stuks al te weinig.

jurrien visser (JuVi op Twitter)

Citaat van: mc196 op 10/02/2019 | 15:03 uur
Het zal wel stalen zenuwen vereisen om Wanneer je een doel op grote afstand ziet aankomen de schaarse SM-2 of SM-6 niet te gebruiken en te wachten tot het binnen bereik van de ESSM komt

Hierin zal (vermoedelijk) een rol voor A.I. zijn weggelegd, zeker als het doel in de nabije toekomst met mach5 en hoger inbound is.

mc196

Het zal wel stalen zenuwen vereisen om Wanneer je een doel op grote afstand ziet aankomen de schaarse SM-2 of SM-6 niet te gebruiken en te wachten tot het binnen bereik van de ESSM komt

Parera

Citaat van: jurrien visser (JuVi op Twitter) op 10/02/2019 | 14:32 uur
Interessante ontwikkelingen!

Inderdaad, de hele studie is interessant en het gaat ook nog over ASW en ASuW van de toekomst.

jurrien visser (JuVi op Twitter)

Citaat van: Parera op 10/02/2019 | 14:18 uur
In de studie gaan ze eigenlijk uit van het verminderen van de lagen die gebruikt worden in de luchtverdediging maar wel met verhoging van het aantal kleinere en goedkopere raketten die gebruikt worden. Hier worden de SM-2 en SM-6 deels vervangen door quadpacked ESSM block 2's.

Misschien kunnen we met onze vLCF's het wel af met 64 cells door een nieuwe vorm van AAW toe te passen, hierdoor blijven er meer cellen beschikbaar voor andere wapen systemen zoals de TLAM, SM-3 of een toekomstig ASuW wapen.

Interessante ontwikkelingen!

Parera

In de studie gaan ze eigenlijk uit van het verminderen van de lagen die gebruikt worden in de luchtverdediging maar wel met verhoging van het aantal kleinere en goedkopere raketten die gebruikt worden. Hier worden de SM-2 en SM-6 deels vervangen door quadpacked ESSM block 2's.

Misschien kunnen we met onze vLCF's het wel af met 64 cells door een nieuwe vorm van AAW toe te passen, hierdoor blijven er meer cellen beschikbaar voor andere wapen systemen zoals de TLAM, SM-3 of een toekomstig ASuW wapen.

Parera

#619
New Concept for Sea-based Anti-air Warfare

The first step toward implementing offensive sea control is to enable surface combatants to carry more offensive weapons. The main battery of a CG or DDG is its VLS magazine, which
has a finite capacity and currently cannot be reloaded at sea.44 With a standard peacetime missile loadout, on average only about a third of surface fleet VLS cells are devoted to missiles such as the Tomahawk or SM-6 that could be considered offensive (since they can engage enemy weapon launchers before they are in range to attack). Offensive SUW, AAW, ASW, and strike weapons compete for space in the VLS magazine with defensive AAW weapons, so each cell not needed for air defense could be devoted instead to attacking ships, aircraft, submarines, or launchers and sensors ashore.

War at sea today and in the future will likely include large ASCM salvos from ships, submarines, and aircraft and a smaller number of ASBM attacks from shore. Today's long-range ASCMs cost from $1 million–$3 million,45 whereas an ASBM costs about $6 million–$10 million;46 an adversary could be expected to launch dozens of them in each attempt to disable or destroy a $1 billion–$2 billion DDG or the $14 billion carrier it defends.

Defeating large ASCM salvos is expected to require many VLS-launched interceptors, but the surface fleet could reduce this air defense "overhead" by adopting a new approach to seabased AAW.
Large surface combatants today employ an integrated, layered AAW approach to protect themselves and their defended ships (carriers, amphibious ships, etc.).  This approach is designed to engage enemy aircraft and missiles multiple times starting from long range (from 50 nm to more than 100 nm) through medium range (about 10nm to 30 nm) to short range (less than about 5 nm). Each layer is serviced by a different set of interceptors, with those for the long-range layer (e.g., SM-2 and SM-6) being preferentially used; they are also the largest (taking up the most VLS space) and often the most expensive.47

The short-range layer is addressed by individual ships' self-defense systems. Electronic warfare jammers and decoys are also used from medium to short range to defeat missile seekers.
The new approach presented below calls for separating the missions of the long-range and medium-range AAW layers. It would shift surface combatant long-range AAW capabilities to focus on destroying enemy aircraft as part of offensive AAW and establish a dense, medium-range defensive AAWumbrella designed to defeat enemy missiles.

The current layered defensive AAW approach puts surface combatants on the wrong end of weapon and cost exchanges. Figure 3 shows the number of ASCMs that can be defeated with a hundred ship-based interceptors, which is close to a DDG-51's total VLS capacity of ninety-six cells.  As the figure shows, using today's standard shot doctrine of "shoot, shoot,look, shoot"48 (SS-L-S), fewer than fifty incoming missiles could be engaged regardless of the interceptor's probability of "killing" the missile (also known as Pk for "kill probability" or "probability of kill"). A S-L-S shot doctrine may enable more ASCMs to be engaged, but would increase risk; unless the ASCM is initially engaged at long range using OTH targeting data, it may reach the target before a second engagement can occur.

EW systems do not enable the ship to reduce the number of interceptors shot at incoming ASCMs because they cannot defeat the ASCM until the missile breaks the horizon—about 10 nm out for a surface combatant. Instead they are used as a last resort to stop "leakers" from reaching the defended ship. As a result, the complete VLS capacity of a DDG (if all devoted to air defense) would be consumed against fewer than fifty ASCMs—missiles that would cost the enemy about 2 percent the price of a DDG.49

Because it would be too risky to adjust air defense shot doctrine, better long-range interceptors will not improve the weapon exchange and only exacerbate the Navy's cost disadvantage.
The medium to long-range SM-6 interceptor is faster, longer range, more maneuverable, and has a better seeker than the SM-2. This would likely provide the SM-6 a higher Pk than SM-2
against any given ASCM. But an SM-6 interceptor costs about $4 million, whereas an SM-2 costs about $680,00050 and a typical advanced ASCM costs about $2 million–$3 million.51

Given a SS-L-S firing doctrine, each defensive engagement using SM-6s will cost two to four times that of the ASCM it is intended to defeat. Alternatively, four medium-range SM-2 interceptors would cost about the same as the ASCM and would likely be more effective than two SM-6s. This approach would address the cost exchange problem, but would worsen the weapons exchange problem.

A defensive AAW scheme centered on medium-range (10–30 nm52) interceptors such as the Evolved Sea Sparrow Missile (ESSM) would address both the weapons and cost exchange challenges. ESSM engagements would be cheaper53 than using the SM-6—even if an extra ESSM is needed to account for them having a lower Pk. Moreover, the ESSM Block 2 that will debut in 2020 will have a fully active seeker similar to the SM-6, and will likely boast a similar Pk against most ASCMs. Against the fastest supersonic ASCMs and future hypersonic ASCMs, SM-2s or SM-6s may be needed for the speed to intercept the incoming missile. Mediumrange interceptors such as ESSM are smaller than longer-range interceptors and can be placed in "quad packs" in each VLS cell, quadrupling the ship's defensive AAW capacity or enabling fewer VLS cells to be assigned to defensive AAW weapons. EW jamming, deception, and decoy systems will complement medium-range interceptors from 10–30 nm (depending on the missile's altitude), and EW performance will also improve over the next decade as the Navy continues to field upgrades to the SLQ-32 EW system common to all large surface combatants.

This new AAW concept acknowledges the challenges in obtaining OTH targeting data in an highly contested environment where long-range data links could be jammed. Detecting a seaskimming ASCM at the SM-6's maximum range would require a surface sensor positioned more than 100 nm forward from the surface combatant or an airborne sensor at more than 10,000 feet of altitude due to the inability of shipboard S or X band air defense radars or passive sensors to see over the horizon. The proposed concept shifts the defensive AAW focus to a range in which a CG or DDG can use its organic (including embarked helicopter) sensors to detect incoming missiles. For example, using onboard sensors, a DDG or CG could detect an incoming sea-skimming ASCM at about 10 nm away. Using its embarked helicopter at a nominal altitude of 800 feet, the ship could detect a sea-skimming ASCM at about 30 nm.

Higher-altitude ASCMs and aircraft could be detected at longer ranges. A medium-range defensive AAW approach will also better enable the surface fleet to integrate new weapons such as lasers, high-power radiofrequency weapons (HPRF), EMRGs, and hypervelocity projectiles (HVP) that will likely be mature in the early to mid-2020s.54

Because they do not require VLS cells, increasing the use of these systems for defensive AAW will enable the Navy to shift additional VLS capacity to offensive weapons.55
Lasers, HPRF weapons, EMRG, and HVPs are most effective at medium ranges, and thus are consistent with a shift in emphasis toward EW and medium-range interceptors such as ESSM in providing defensive AAW. Lasers and HPRF operate in a straight line from the weapon to the target and thus are limited by the horizon from engaging an incoming sea-skimming ASCM at more than 10–15 nm. Further, the shipboard lasers expected to be mature in the mid-2020s will only have the power to be effective against ASCMs out to a range of about 10 nm.56

HVPs from an EMRG or naval gun will have a longer maximum range than lasers, but are also constrained by physics to shorter ranges for defensive AAW. The 32-megajoule (MJ) EMRG
the Navy is testing ashore today can launch a projectile at Mach 7 that will travel about 110 nm surface-to-surface and hit a target or burst into fragments. A naval gun is expected to
launch an HVP at about Mach 5 and reach 40–70 nm.57 Since an HVP is unpowered, it travels a generally ballistic path and slows throughout its flight, which will limit its effective range for defensive AAW to much less than its surface-to-surface range. Although an HVP could theoretically engage a low-flying ASCM at close to its maximum range since it is essentially a surface target, the HVP time of flight will be about two minutes. During that time a modern supersonic ASCM is likely to maneuver, and the unpowered projectile cannot correct for significant changes in target position. At an engagement range of about 30 nm for an EMRG or 10 nm for a naval gun, an HVP will reach the incoming missile in about 10–20 seconds, allowing much less time for the missile to maneuver. Unlike the sea-skimming ASCM, an ASBM warhead is likely to be diving toward the ship from high altitude, which will require the HVP to go up to meet it. An HVP will gain altitude for the first 10–30 nm of its travel, enabling it to potentially engage incoming ASBM warheads at that range.

Lasers, HPRF weapons, EMRG, and HVPs, however, will not be able to completely replace interceptors or point defense systems. A laser defeats an incoming ASCM by burning through its casing, causing it to lose aerodynamic stability and veer off course, or damaging its seeker, so the ASCM cannot find its target. HPRF weapons use a high-power RF pulse to damage a missile's electronics. Too much moisture in the air may prevent the laser or HPRF weapon from transmitting enough energy to the ASCM, while clouds, dust, or fog can prevent the electro-optical directors that aim the laser or HPRF weapon from "seeing" the target. The EMRG is not affected by atmospheric effects but will require more electrical power than a CG or Arleigh Burke DDG can generate; it will have to be initially deployed on a separate vessel such as an expeditionary fast transport (EPF) or Zumwalt DDG. And even when the required power levels are available, the EMRG or naval gun HVP rate of fire will only be six to ten shots per minute, which will limit the salvo size that can be engaged to between three and five missiles.58

The proposed medium-range defensive AAW scheme (see Figure 4) would consist of lasers, HPRF weapons, EMRG, HVPs, interceptors (e.g., ESSM), and EW systems engaging incoming missiles in a dense layer from 10–30 nm. This is far enough away for one surface combatant to protect another or to defend other ships such as a carrier or transport. It is also much more dense than today's layered air defense scheme, since each VLS cell shifted from SM-2s and SM-6s to ESSM provides four times the defensive AAW capacity; EMRG, HPRF weapons, HVPs, and lasers will add even greater capacity. Individual ship point-defense systems would engage "leakers" at 2–5 nm, but this constitutes self-defense rather than a defensive AAW layer.

Automated decision aids that match defensive AAW systems to incoming missiles will be an essential element of this scheme since multiple systems will be engaging incoming missiles at the same approximate range. These decision aids are inherent in the Aegis combat system but would need to be modestly upgraded to incorporate new systems.  EMRG host platforms like EPF would likely need a network such as CEC installed to enable them to participate in the Aegis combat system. A key barrier to implementing this new AAW scheme is cultural. Today's surface combatant
commanders prefer defenses that can engage incoming missiles multiple times through multiple layers. This provides a false confidence, however. A layered approach that starts at long ranges (>100 nm) uses larger, more expensive interceptors preferentially and will consume defensive AAW capacity faster than a single medium-range defensive layer without substantially improving air defense effectiveness. The proposed defensive AAW approach will provide rapid engagements with prompt feedback to commanders, who can re-engage an incoming missile multiple times within the short-range layer using multiple systems guided by automated decision aids such as Aegis.

Offensive AAW is the other side of the new sea-based AAW approach. This is where longrange (50 nm to more than 100 nm) interceptors such as SM-6s are better suited. SM-6s, in
particular, can engage enemy aircraft outside their ASCM range and are much less expensive than the aircraft they will destroy, producing a more advantageous cost exchange than using SM-6 against enemy ASCMs. Enemy aircraft also generally fly at higher altitudes than ASCMs, enabling them to be detected farther away by shipboard radars whose visibility is limited by the horizon.
When available, the engagement range for offensive AAW could be enhanced by OTH targeting information via CEC or NIFC-CA.

This new approach to sea-based AAW would increase the capacity of surface combatants for defensive AAW and enable more of their VLS cells to host offensive AAW, SUW, and ASW
missiles—two essential elements to the surface fleet regaining its ability for offensive sea control. The detailed programmatic implications of this change and resulting notional VLS cell allocation are described in Chapter 3.


44 Flight 1 DDG-51s have 90 VLS cells, whereas Flight II and IIa DDG-51s have 96 VLS cells; a CG has 122 cells. There are several potential approaches for at-sea reloading that could be pursued to increase the effective capacity of a large surface combatant.

45 An Indian/Russian BrahMos ASCM is $2 million–$3 million. See "Indian Army Demands More Missile Regiments," Strategy Page blog, January 26, 2010, available at: http://www.strategypage.com/htmw/htart/articles/20100126.aspx. A U.S. Tomahawk LACM (comparable in sophistication to many ASCMs) is $1.3 million; see DoD, Fiscal Year (FY) 15 Budget Estimates: Weapons Procurement, Navy (Washington, DC: DoD, 2014), available at http://www.finance.hq.navy.mil/fmb/15pres/wpn_book.pdf.

46 Two Chinese analysts, Qiu Zhenwei and Long Haiyan, published this estimate in 2006. See Andrew S. Erickson, "Ballistic Trajectory—China Develops New Anti-Ship Missile," Jane's Intelligence Review, 22, January 4, 2010.

47 Navy Air and Missile Defense Command (NAMDC), The Navy Update and Role in Integrated Air and Missile Defense, Power Point Presentation (Dahlgren, VA: NAMDC, August 31, 2009), available at http://www2.navalengineers.org/ sections/flagship/documents/comrelbrief11aug09part2.ppt.

48 A common U.S. air defense tactic is to shoot two interceptors at an incoming missile, look for successful engagement, and then shoot again if necessary. Therefore, at least two interceptors are expended on every incoming missile.

49 A Flight II or IIa DDG-51 has ninety-six VLS cells. A nominal wartime loadout would be forty-eight SM-2 interceptors, sixteen SM-6 interceptors, thirty-two ESSMs (eight cells), eight ASW rockets, and sixteen Tomahawk LACMs.

50 DoD, Fiscal Year (FY) 15 Budget Estimates: Weapons Procurement, Navy.

51 This is the cost of the Russia/India codeveloped BrahMos ASCM based on the Russian SS-N-26 Yahkont ASCM. The BrahMos ASCM is being actively marketed to Latin American and Southeast Asian militaries; see "Indian Army Demands More Missile Regiments," 2010; and "BrahMos Missile Can Be Exported to Southeast Asian, Latin American Nations," Economic Times, August 3, 2014. For comparison, a Tomahawk costs about $1.3 million; see DoD, Fiscal Year (FY) 15 Budget Estimates: Weapons Procurement, Navy.

52 An escort will need defensive AAW capabilities that reach a least 20–30 nm to be able to defend nearby ships. For safety, Navy ships normally maintain at least 3–5 nm between ships. An ASCM travelling at Mach 2 will take about forty-five seconds to reach a targeted ship 20 nm away. An escort ship could engage the incoming ASCM with ESSMs at that range from 10 nm on the other side of the targeted ship. These engagements would occur more than 5 nm from the defended ship, after which the defended ship's point defenses—close-in weapon system (CIWS) and Rolling Airframe Missile (RAM)—would be in range to engage "leakers" that are not defeated by the ESSMs.

53 An ESSM costs about $1.3 million; see DoD, Fiscal Year (FY) 15 Budget Estimates: Weapons Procurement, Navy.

54 An HPRF weapon uses a high-energy RF pulse to disrupt or damage electronics inside a threat missile. The HVP is an artillery round that can be shot from a gun or EMRG and achieve hypersonic muzzle velocities (more than Mach 5), which would enable it to be shot in front of incoming missiles. The HVP would either directly hit the incoming weapon or (more likely) explode and use shrapnel to damage the missile and send it off course. Ronald O'Rourke, Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress, RL 32109 (Washington, DC: Congressional Research Service, June 7, 2017), available at https://fas.org/sgp/crs/weapons/R44175.pdf; and Sydney J. Freedberg Jr., "Lasers vs. Drones: Directed Energy Summit Emphasizes the Achievable," Breaking Defense, June 23, 2016, available at http:// breakingdefense.com/2016/06/lasers-vs-dronesdirected-energy-summit-emphasizes-the-achievable/.

55 Lasers and EMRG would also be possible point defense weapons at short (<5 nm) range. This application, however, would not address the shortage of VLS cells on surface combatants.

56 Ronald O'Rourke, Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congress, R41526 (Washington, DC: Congressional Research Service, July 31, 2014), available at http://fas.org/sgp/crs/weapons/R41526.pdf. Also, as lasers become more common in defensive AAW, potential adversaries may begin attempting to harden missiles against laser attack.

57 According to BAE Systems, an HVP's surface-to-surface firing range is more than 40 nautical miles when fired from a Mk 45 Mod 2 5-inch gun and more than 70 nautical miles when fired from a 155mm gun on a DDG-1000 class destroyer. See BAE Systems, "Hyper Velocity Projectile (HVP)," factsheet, updated June 2016, available at http://www.baesystems.com/
en/product/hyper-velocity-projectile-hvp.

58 For example, a nominal ASCM speed is Mach 3.5 or about 2,500 kts, and EMRG projectiles will average about Mach 5 or about 3,600 kts. The ASCM will travel about 6 nm between EMRG shots if it has a ten-shot/minute firing rate. If the ASCM salvo is initially engaged at 30 nm, the EMRG will be able to shoot five times at the incoming salvo before it arrives at the ship. With a SS-L-S doctrine that enables at most three missiles to be engaged, and with a S-L-S doctrine at most five could be engaged.


[Source: CSBA @ full study ]

Parera

Citaat van: jurrien visser (JuVi op Twitter) op 10/02/2019 | 13:40 uur
Ik heb zo het vermoeden dat dit ook de uiteindelijke uitkomst zal zijn, dus eigenlijk nauwelijks verandering t.o.v. de huidige LCF's en F124's.

Ik geloof ook niet dat NL zou opteren voor een 10K ton hull, al zou dit wel de mogelijkheid bieden om gemakkelijk 128 vls cellen te installeren, maar zal blijven inzetten op familievorming waarbij de basis best een percentage groter kan worden dan 144m en 6.100 ton.

Een samenwerking zoals destijds met het S fregat en F122 zou alleen kunnen als de Duitsers hun visie bijstellen zodat deze meer parallel loopt met die van Nederland maar zeker niet andersom.

+1

Het is nog maar de vraag of een heel groot aantal cellen nodig is, ik heb laatst een studie gelezen van de Amerikanen over hoe ze o.a. kijken naar de toekomst op gebied van luchtverdediging en dan specifiek naar hypersonische raketten. Er is ook gekeken naar wat het kost om een inkomende raket tegen te houden en hoe dit goedkoper kan worden in de toekomst.

Het deel moet apart gepost worden (in meerdere delen).

Het hele studie is hieronder te vinden
https://csbaonline.org/research/publications/commanding-the-seas-a-plan-to-reinvigorate-u-s-navy-surface-warfare